Properties of solutions ofn-th order linear differential equations
نویسندگان
چکیده
منابع مشابه
Approximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملOn the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملOscillation of solutions of some higher order linear differential equations
We shall assume that reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory of meromorphic functions(see [11,14]). In addition, we will use the notation σ(f) to denote the order of growth of entire function f(z), σ2(f) to denote the hyper-order of f(z), λ(f)(λ2(f)) to denote the exponent(hyper-exponent) of convergence of the zero-s...
متن کاملOn the Order of Solutions of Analytic Linear Differential Equations
(1) d/dxX(z) = A{z)X{z), where X(z) is an n x 1 column vector and A(z) is an n x n matrix of singlevalued meromorphic functions in a neighbourhood of the (isolated) singular point 0. Sometimes we write A instead of A(z) but we always consider a matrix of functions with such a notation unless explicitly stated otherwise. Each fundamental solution matrix for (1) can be represented near zero as (2...
متن کاملGrowth of meromorphic solutions of higher-order linear differential equations
Abstract. In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1965
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1965.15.1045